CHRIST CHURCH NEW MALDEN

BECOMING THE PEOPLE GOD MADE US TO BE

Target	Example
I can count from 0 in multiples of 4	4, 8, 12, 16 etc
I can count from 0 in multiples of 8	8, 16, 24, 32 etc
I can count from 0 in multiples of 50	50,100, 150,200 etc
I can count from 0 in multiples of 100	100, 200, 300,400 etc
I can count up and down in tenths	1/10, 2/10, 3/10, 4/10 etc $0.1,0.2,0.3,0.4$ etc
I know 10 more than a number	10 more than 408
I know 10 less than a number	10 less than 279
I know 100 more than a number	100 more than 734
I know 100 less than a number	100 less than 612
I can read numbers up to 1000 in numerals	567
I can write numbers up to 1000 in numerals	381
I can read numbers up to 1000 in words	Six hundred and fifty two
I can write numbers up to 1000 in words	Nine hundred and eighty six
I can read Roman numerals from I to XII	$\begin{aligned} & I=1 \text { II =2 III=3 } \quad \mathrm{V}=4 \mathrm{~V}=5 \mathrm{VI}=6 \mathrm{VII}=7 \\ & \mathrm{VIII}=8 \quad I X=9 \quad X=10 \mathrm{XI}=11 \text { XII=12 } \end{aligned}$
I know my x3 table	All $\times 3$ table to 12×3 What is three multiplied by nine?... or 3×6?
I know related division facts for the $3 x$ table	What is twenty one divided by three?... or 27 $\div 3=9$

I know my $\times 4$ table	All $\times 4$ table to 12×4 What is four multiplied by eleven?... or 4×4 ?
I know related division facts for the $4 x$ table	What is forty eight divided by four?... or 28:4=7
I know my $\times 8$ table	All x8 table to 12×8 What is eight multiplied by twelve?... or 8×3?
I know related division facts for the $8 x$ table	What is sixty four divided by eight?... or 56:8=7
I know by heart all number bonds that total 100	$\begin{aligned} & 34+66=100 \quad 45+55=100 \quad 89+11=100 \\ & \text { etc } \end{aligned}$
I can multiply any number by 10	$34 \times 10=2 \times 10=41 \times 10=\mathrm{etc}$
I can divide any number by 10	$30 \div 10=110 \div 10=$ etc
I can double any 2 digit number	Double 34= Double 81= etc
I can half any even number up to 100	Half of 42= Half of 98= etc
I can multiply any number by 100	$34 \times 100=50 \times 100=\mathrm{etc}$
I can divide any number by 100	400 $-100=310 \div 100=$ etc
I can tell the time to the nearest minute on an analogue clock	
I can tell the time on a 12 hour digital clock	12:45
I know the number of seconds in a minute	60 seconds in a minute
I know the number of days in each month	30 days have September, April, June and November, all the rest have 31 except February which has 28, 29 in a leap year
I know the number of days in a year and a leap year	365 days in a year 366 days in a leap year (this is every four years-the next leap year will be in 2016)

A Guide to Place Value

Place value refers to the fact that digits have different values depending on their place in a number. For example, the 4 in 47 means 40 , because it is in the tens column, whereas the 2 in 281 means 2 hundred. We teach the children to use place value grids. This place value grid shows that 476 is made up of 4 hundreds (400), 7 tens (70) and 6 units (6).

\mathbf{H}	\mathbf{T}	U
4	7	6

The children are taught to partition numbers, according to their place value, e.g. $476=400+70+6$. It is really important for children to understand the value of each digit in a number, and this is something it would be very helpful to practise at home.

We also teach children to use place value grids to help them multiply and divide numbers by $10,100,1000$ etc. They will see that as you move from right to left in the grid, the digits are worth 10 times more each time.

It is important to remember that the decimal point is FIXED and therefore the digits are moved to the left when a number is multiplied and will move to the right when the number is divided by $10,100,1000$ etc. e.g. $8.4 \times 10=$ $84 ; 8.4 \times 100=840$.

Th	H	T	\checkmark	Tenths	Hundredths
			8	4	
		8	4		
	8	4	0		

(Tip: Do avoid saying to your child "just add a zero" when you multiply by 10 , as this does not work with decimals, e.g. $6.3 \times 10 \neq 6.30$ as this is the same number)

You can also use place value to divide by $10,100,1000$, etc. When you divide, digits move to the left, not the right. E.g. $940 \div 10=94 ; 940 \div 100=9.4$.

